MakeItFrom.com
Menu (ESC)

EN AC-46000 Aluminum vs. EN 1.3505 Steel

EN AC-46000 aluminum belongs to the aluminum alloys classification, while EN 1.3505 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46000 aluminum and the bottom bar is EN 1.3505 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
180 to 210
Elastic (Young's, Tensile) Modulus, GPa 73
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
72
Tensile Strength: Ultimate (UTS), MPa 270
600 to 690

Thermal Properties

Latent Heat of Fusion, J/g 530
250
Maximum Temperature: Mechanical, °C 180
430
Melting Completion (Liquidus), °C 620
1450
Melting Onset (Solidus), °C 530
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 100
45
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 82
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.4
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.6
1.5
Embodied Energy, MJ/kg 140
20
Embodied Water, L/kg 1040
52

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 26
22 to 25
Strength to Weight: Bending, points 33
20 to 22
Thermal Diffusivity, mm2/s 42
12
Thermal Shock Resistance, points 12
18 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 79.7 to 90
0 to 0.050
Carbon (C), % 0
0.93 to 1.1
Chromium (Cr), % 0 to 0.15
1.4 to 1.6
Copper (Cu), % 2.0 to 4.0
0 to 0.3
Iron (Fe), % 0 to 1.3
97.1 to 98.3
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0.25 to 0.45
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.55
0
Oxygen (O), % 0
0 to 0.0015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 8.0 to 11
0.15 to 0.35
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0 to 0.25
0