MakeItFrom.com
Menu (ESC)

EN AC-46100 Aluminum vs. 3005 Aluminum

Both EN AC-46100 aluminum and 3005 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-46100 aluminum and the bottom bar is 3005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
33 to 73
Elastic (Young's, Tensile) Modulus, GPa 73
70
Elongation at Break, % 1.0
1.1 to 16
Fatigue Strength, MPa 110
53 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
26
Tensile Strength: Ultimate (UTS), MPa 270
140 to 270
Tensile Strength: Yield (Proof), MPa 160
51 to 240

Thermal Properties

Latent Heat of Fusion, J/g 550
400
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 600
660
Melting Onset (Solidus), °C 540
640
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 110
160
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
42
Electrical Conductivity: Equal Weight (Specific), % IACS 90
140

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 7.6
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1030
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
2.2 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 170
18 to 390
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
49
Strength to Weight: Axial, points 27
14 to 27
Strength to Weight: Bending, points 34
21 to 33
Thermal Diffusivity, mm2/s 44
64
Thermal Shock Resistance, points 12
6.0 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 80.4 to 88.5
95.7 to 98.8
Chromium (Cr), % 0 to 0.15
0 to 0.1
Copper (Cu), % 1.5 to 2.5
0 to 0.3
Iron (Fe), % 0 to 1.1
0 to 0.7
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.3
0.2 to 0.6
Manganese (Mn), % 0 to 0.55
1.0 to 1.5
Nickel (Ni), % 0 to 0.45
0
Silicon (Si), % 10 to 12
0 to 0.6
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0 to 0.1
Zinc (Zn), % 0 to 1.7
0 to 0.25
Residuals, % 0 to 0.25
0 to 0.15