MakeItFrom.com
Menu (ESC)

EN AC-46100 Aluminum vs. AISI 310MoLN Stainless Steel

EN AC-46100 aluminum belongs to the aluminum alloys classification, while AISI 310MoLN stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46100 aluminum and the bottom bar is AISI 310MoLN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
190
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
28
Fatigue Strength, MPa 110
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
80
Tensile Strength: Ultimate (UTS), MPa 270
610
Tensile Strength: Yield (Proof), MPa 160
290

Thermal Properties

Latent Heat of Fusion, J/g 550
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 600
1420
Melting Onset (Solidus), °C 540
1380
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 110
14
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 90
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
28
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 7.6
5.0
Embodied Energy, MJ/kg 140
70
Embodied Water, L/kg 1030
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
140
Resilience: Unit (Modulus of Resilience), kJ/m3 170
200
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 27
21
Strength to Weight: Bending, points 34
20
Thermal Diffusivity, mm2/s 44
3.7
Thermal Shock Resistance, points 12
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 80.4 to 88.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.15
24 to 26
Copper (Cu), % 1.5 to 2.5
0
Iron (Fe), % 0 to 1.1
45.2 to 53.8
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
1.6 to 2.6
Nickel (Ni), % 0 to 0.45
20.5 to 23.5
Nitrogen (N), % 0
0.090 to 0.15
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 10 to 12
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.7
0
Residuals, % 0 to 0.25
0