MakeItFrom.com
Menu (ESC)

EN AC-46100 Aluminum vs. EN 1.4887 Stainless Steel

EN AC-46100 aluminum belongs to the aluminum alloys classification, while EN 1.4887 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46100 aluminum and the bottom bar is EN 1.4887 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
170
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
45
Fatigue Strength, MPa 110
280
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Tensile Strength: Ultimate (UTS), MPa 270
580
Tensile Strength: Yield (Proof), MPa 160
300

Thermal Properties

Latent Heat of Fusion, J/g 550
320
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 600
1390
Melting Onset (Solidus), °C 540
1350
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 90
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
39
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 7.6
6.7
Embodied Energy, MJ/kg 140
96
Embodied Water, L/kg 1030
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
220
Resilience: Unit (Modulus of Resilience), kJ/m3 170
230
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 27
20
Strength to Weight: Bending, points 34
19
Thermal Diffusivity, mm2/s 44
3.2
Thermal Shock Resistance, points 12
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 80.4 to 88.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.15
20 to 23
Copper (Cu), % 1.5 to 2.5
0
Iron (Fe), % 0 to 1.1
34.2 to 45
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.55
0 to 2.0
Nickel (Ni), % 0 to 0.45
33 to 37
Niobium (Nb), % 0
1.0 to 1.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 10 to 12
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.7
0
Residuals, % 0 to 0.25
0