MakeItFrom.com
Menu (ESC)

EN AC-46100 Aluminum vs. EN 1.7362 Steel

EN AC-46100 aluminum belongs to the aluminum alloys classification, while EN 1.7362 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46100 aluminum and the bottom bar is EN 1.7362 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0
21 to 22
Fatigue Strength, MPa 110
140 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
74
Tensile Strength: Ultimate (UTS), MPa 270
510 to 600
Tensile Strength: Yield (Proof), MPa 160
200 to 360

Thermal Properties

Latent Heat of Fusion, J/g 550
260
Maximum Temperature: Mechanical, °C 180
510
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 110
40
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 90
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
4.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.6
1.8
Embodied Energy, MJ/kg 140
23
Embodied Water, L/kg 1030
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
100 to 340
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 27
18 to 21
Strength to Weight: Bending, points 34
18 to 20
Thermal Diffusivity, mm2/s 44
11
Thermal Shock Resistance, points 12
14 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 80.4 to 88.5
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0 to 0.15
4.0 to 6.0
Copper (Cu), % 1.5 to 2.5
0 to 0.3
Iron (Fe), % 0 to 1.1
91.5 to 95.2
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.55
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0 to 0.45
0 to 0.3
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 10 to 12
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.7
0
Residuals, % 0 to 0.25
0