MakeItFrom.com
Menu (ESC)

EN AC-46100 Aluminum vs. Grade CX2M Nickel

EN AC-46100 aluminum belongs to the aluminum alloys classification, while grade CX2M nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46100 aluminum and the bottom bar is grade CX2M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
220
Elongation at Break, % 1.0
45
Fatigue Strength, MPa 110
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
84
Tensile Strength: Ultimate (UTS), MPa 270
550
Tensile Strength: Yield (Proof), MPa 160
310

Thermal Properties

Latent Heat of Fusion, J/g 550
330
Maximum Temperature: Mechanical, °C 180
990
Melting Completion (Liquidus), °C 600
1500
Melting Onset (Solidus), °C 540
1450
Specific Heat Capacity, J/kg-K 890
430
Thermal Conductivity, W/m-K 110
10
Thermal Expansion, µm/m-K 21
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
65
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 7.6
12
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 1030
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
210
Resilience: Unit (Modulus of Resilience), kJ/m3 170
220
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 27
18
Strength to Weight: Bending, points 34
17
Thermal Diffusivity, mm2/s 44
2.7
Thermal Shock Resistance, points 12
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 80.4 to 88.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.15
22 to 24
Copper (Cu), % 1.5 to 2.5
0
Iron (Fe), % 0 to 1.1
0 to 1.5
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Molybdenum (Mo), % 0
15 to 16.5
Nickel (Ni), % 0 to 0.45
56.4 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 10 to 12
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.7
0
Residuals, % 0 to 0.25
0