MakeItFrom.com
Menu (ESC)

EN AC-46100 Aluminum vs. N08135 Stainless Steel

EN AC-46100 aluminum belongs to the aluminum alloys classification, while N08135 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46100 aluminum and the bottom bar is N08135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
46
Fatigue Strength, MPa 110
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
80
Tensile Strength: Ultimate (UTS), MPa 270
570
Tensile Strength: Yield (Proof), MPa 160
240

Thermal Properties

Latent Heat of Fusion, J/g 550
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 540
1390
Specific Heat Capacity, J/kg-K 890
460
Thermal Expansion, µm/m-K 21
16

Otherwise Unclassified Properties

Base Metal Price, % relative 10
39
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 7.6
6.8
Embodied Energy, MJ/kg 140
94
Embodied Water, L/kg 1030
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
210
Resilience: Unit (Modulus of Resilience), kJ/m3 170
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 27
19
Strength to Weight: Bending, points 34
19
Thermal Shock Resistance, points 12
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 80.4 to 88.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.15
20.5 to 23.5
Copper (Cu), % 1.5 to 2.5
0 to 0.7
Iron (Fe), % 0 to 1.1
30.2 to 42.3
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.45
33 to 38
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 10 to 12
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
0.2 to 0.8
Zinc (Zn), % 0 to 1.7
0
Residuals, % 0 to 0.25
0