MakeItFrom.com
Menu (ESC)

EN AC-46200 Aluminum vs. 6018 Aluminum

Both EN AC-46200 aluminum and 6018 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-46200 aluminum and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
69
Elongation at Break, % 1.1
9.0 to 9.1
Fatigue Strength, MPa 87
85 to 89
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 210
290 to 300
Tensile Strength: Yield (Proof), MPa 130
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 510
400
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 620
640
Melting Onset (Solidus), °C 540
570
Specific Heat Capacity, J/kg-K 880
890
Thermal Conductivity, W/m-K 110
170
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
44
Electrical Conductivity: Equal Weight (Specific), % IACS 88
140

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.8
2.9
Embodied Carbon, kg CO2/kg material 7.7
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1060
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 110
360 to 380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
48
Strength to Weight: Axial, points 21
28 to 29
Strength to Weight: Bending, points 28
34 to 35
Thermal Diffusivity, mm2/s 44
65
Thermal Shock Resistance, points 9.5
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.6 to 90.3
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 2.0 to 3.5
0.15 to 0.4
Iron (Fe), % 0 to 0.8
0 to 0.7
Lead (Pb), % 0 to 0.25
0.4 to 1.2
Magnesium (Mg), % 0.050 to 0.55
0.6 to 1.2
Manganese (Mn), % 0.15 to 0.65
0.3 to 0.8
Nickel (Ni), % 0 to 0.35
0
Silicon (Si), % 7.5 to 9.5
0.5 to 1.2
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 1.2
0 to 0.3
Residuals, % 0 to 0.25
0 to 0.15