MakeItFrom.com
Menu (ESC)

EN AC-46200 Aluminum vs. ASTM A369 Grade FP91

EN AC-46200 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP91 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46200 aluminum and the bottom bar is ASTM A369 grade FP91.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 82
200
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.1
19
Fatigue Strength, MPa 87
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 210
670
Tensile Strength: Yield (Proof), MPa 130
460

Thermal Properties

Latent Heat of Fusion, J/g 510
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 110
26
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 88
10

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.7
2.6
Embodied Energy, MJ/kg 140
37
Embodied Water, L/kg 1060
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.0
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110
560
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 21
24
Strength to Weight: Bending, points 28
22
Thermal Diffusivity, mm2/s 44
6.9
Thermal Shock Resistance, points 9.5
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.6 to 90.3
0 to 0.020
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Copper (Cu), % 2.0 to 3.5
0
Iron (Fe), % 0 to 0.8
87.3 to 90.3
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0.15 to 0.65
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0 to 0.35
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 7.5 to 9.5
0.2 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0 to 1.2
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.25
0