MakeItFrom.com
Menu (ESC)

EN AC-46200 Aluminum vs. R30008 Cobalt

EN AC-46200 aluminum belongs to the aluminum alloys classification, while R30008 cobalt belongs to the cobalt alloys. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46200 aluminum and the bottom bar is R30008 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 1.1
1.1 to 73
Fatigue Strength, MPa 87
320 to 530
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
83
Tensile Strength: Ultimate (UTS), MPa 210
950 to 1700
Tensile Strength: Yield (Proof), MPa 130
500 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 510
320
Melting Completion (Liquidus), °C 620
1400
Melting Onset (Solidus), °C 540
1330
Specific Heat Capacity, J/kg-K 880
450
Thermal Expansion, µm/m-K 22
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
95
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 7.7
8.1
Embodied Energy, MJ/kg 140
110
Embodied Water, L/kg 1060
400

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 110
590 to 2720
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 21
31 to 56
Strength to Weight: Bending, points 28
25 to 37
Thermal Shock Resistance, points 9.5
25 to 44

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.6 to 90.3
0
Boron (B), % 0
0 to 0.0010
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
18.5 to 21.5
Cobalt (Co), % 0
39 to 42
Copper (Cu), % 2.0 to 3.5
0
Iron (Fe), % 0 to 0.8
7.6 to 20
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0.15 to 0.65
1.0 to 2.0
Molybdenum (Mo), % 0
6.5 to 7.5
Nickel (Ni), % 0 to 0.35
15 to 18
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 7.5 to 9.5
0 to 1.2
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.2
0
Residuals, % 0 to 0.25
0