MakeItFrom.com
Menu (ESC)

EN AC-46300 Aluminum vs. 201.0 Aluminum

Both EN AC-46300 aluminum and 201.0 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN AC-46300 aluminum and the bottom bar is 201.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
95 to 140
Elastic (Young's, Tensile) Modulus, GPa 73
71
Elongation at Break, % 1.1
4.4 to 20
Fatigue Strength, MPa 79
120 to 150
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 200
370 to 470
Tensile Strength: Yield (Proof), MPa 110
220 to 400

Thermal Properties

Latent Heat of Fusion, J/g 490
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 630
650
Melting Onset (Solidus), °C 530
570
Specific Heat Capacity, J/kg-K 880
870
Thermal Conductivity, W/m-K 120
120
Thermal Expansion, µm/m-K 22
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
30 to 33
Electrical Conductivity: Equal Weight (Specific), % IACS 84
87 to 97

Otherwise Unclassified Properties

Base Metal Price, % relative 10
38
Density, g/cm3 2.9
3.1
Embodied Carbon, kg CO2/kg material 7.7
8.7
Embodied Energy, MJ/kg 140
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9
19 to 63
Resilience: Unit (Modulus of Resilience), kJ/m3 89
330 to 1160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
45
Strength to Weight: Axial, points 20
33 to 42
Strength to Weight: Bending, points 27
37 to 44
Thermal Diffusivity, mm2/s 47
45
Thermal Shock Resistance, points 9.1
19 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 84 to 90
92.1 to 95.1
Copper (Cu), % 3.0 to 4.0
4.0 to 5.2
Iron (Fe), % 0 to 0.8
0 to 0.15
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.3 to 0.6
0.15 to 0.55
Manganese (Mn), % 0.2 to 0.65
0.2 to 0.5
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 6.5 to 8.0
0 to 0.1
Silver (Ag), % 0
0.4 to 1.0
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.25
0.15 to 0.35
Zinc (Zn), % 0 to 0.65
0
Residuals, % 0 to 0.55
0 to 0.1