MakeItFrom.com
Menu (ESC)

EN AC-46300 Aluminum vs. 358.0 Aluminum

Both EN AC-46300 aluminum and 358.0 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-46300 aluminum and the bottom bar is 358.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
71
Elongation at Break, % 1.1
3.5 to 6.0
Fatigue Strength, MPa 79
100 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 200
350 to 370
Tensile Strength: Yield (Proof), MPa 110
290 to 320

Thermal Properties

Latent Heat of Fusion, J/g 490
520
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 630
600
Melting Onset (Solidus), °C 530
560
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 22
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
36
Electrical Conductivity: Equal Weight (Specific), % IACS 84
130

Otherwise Unclassified Properties

Base Metal Price, % relative 10
19
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 7.7
8.7
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 1060
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.9
12 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 89
590 to 710
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
53
Strength to Weight: Axial, points 20
37 to 39
Strength to Weight: Bending, points 27
42 to 44
Thermal Diffusivity, mm2/s 47
63
Thermal Shock Resistance, points 9.1
16 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 84 to 90
89.1 to 91.8
Beryllium (Be), % 0
0.1 to 0.3
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 3.0 to 4.0
0 to 0.2
Iron (Fe), % 0 to 0.8
0 to 0.3
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.3 to 0.6
0.4 to 0.6
Manganese (Mn), % 0.2 to 0.65
0 to 0.2
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 6.5 to 8.0
7.6 to 8.6
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.25
0.1 to 0.2
Zinc (Zn), % 0 to 0.65
0 to 0.2
Residuals, % 0 to 0.55
0 to 0.15