MakeItFrom.com
Menu (ESC)

EN AC-46300 Aluminum vs. ACI-ASTM CB30 Steel

EN AC-46300 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CB30 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46300 aluminum and the bottom bar is ACI-ASTM CB30 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
210
Elastic (Young's, Tensile) Modulus, GPa 73
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 200
500
Tensile Strength: Yield (Proof), MPa 110
230

Thermal Properties

Latent Heat of Fusion, J/g 490
290
Maximum Temperature: Mechanical, °C 170
940
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 530
1380
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
21
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 84
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 7.7
2.3
Embodied Energy, MJ/kg 140
33
Embodied Water, L/kg 1060
130

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 89
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 27
18
Thermal Diffusivity, mm2/s 47
5.6
Thermal Shock Resistance, points 9.1
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 84 to 90
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 3.0 to 4.0
0 to 1.2
Iron (Fe), % 0 to 0.8
72.9 to 82
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.2 to 0.65
0 to 1.0
Nickel (Ni), % 0 to 0.3
0 to 2.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 8.0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.65
0
Residuals, % 0 to 0.55
0