MakeItFrom.com
Menu (ESC)

EN AC-46400 Aluminum vs. 5154A Aluminum

Both EN AC-46400 aluminum and 5154A aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-46400 aluminum and the bottom bar is 5154A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 77 to 120
58 to 100
Elastic (Young's, Tensile) Modulus, GPa 72
68
Elongation at Break, % 1.1 to 1.7
1.1 to 19
Fatigue Strength, MPa 75 to 85
83 to 160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 170 to 310
230 to 370
Tensile Strength: Yield (Proof), MPa 110 to 270
96 to 320

Thermal Properties

Latent Heat of Fusion, J/g 520
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 610
650
Melting Onset (Solidus), °C 570
600
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
32
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 4.9
4.0 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 500
68 to 760
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
51
Strength to Weight: Axial, points 18 to 32
24 to 38
Strength to Weight: Bending, points 26 to 38
31 to 43
Thermal Diffusivity, mm2/s 55
53
Thermal Shock Resistance, points 7.8 to 14
10 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.4 to 90.5
93.7 to 96.9
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0.8 to 1.3
0 to 0.1
Iron (Fe), % 0 to 0.8
0 to 0.5
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.25 to 0.65
3.1 to 3.9
Manganese (Mn), % 0.15 to 0.55
0 to 0.5
Nickel (Ni), % 0 to 0.2
0
Silicon (Si), % 8.3 to 9.7
0 to 0.5
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.8
0 to 0.2
Residuals, % 0 to 0.25
0 to 0.15

Comparable Variants