MakeItFrom.com
Menu (ESC)

EN AC-46400 Aluminum vs. 6008 Aluminum

Both EN AC-46400 aluminum and 6008 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-46400 aluminum and the bottom bar is 6008 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 1.1 to 1.7
9.1 to 17
Fatigue Strength, MPa 75 to 85
55 to 88
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 170 to 310
200 to 290
Tensile Strength: Yield (Proof), MPa 110 to 270
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 520
410
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 610
640
Melting Onset (Solidus), °C 570
620
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 130
190
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
49
Electrical Conductivity: Equal Weight (Specific), % IACS 110
160

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.5
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1070
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 4.9
24 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 500
76 to 360
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
50
Strength to Weight: Axial, points 18 to 32
21 to 29
Strength to Weight: Bending, points 26 to 38
28 to 35
Thermal Diffusivity, mm2/s 55
77
Thermal Shock Resistance, points 7.8 to 14
9.0 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.4 to 90.5
96.5 to 99.1
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0.8 to 1.3
0 to 0.3
Iron (Fe), % 0 to 0.8
0 to 0.35
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.25 to 0.65
0.4 to 0.7
Manganese (Mn), % 0.15 to 0.55
0 to 0.3
Nickel (Ni), % 0 to 0.2
0
Silicon (Si), % 8.3 to 9.7
0.5 to 0.9
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0 to 0.8
0 to 0.2
Residuals, % 0 to 0.25
0 to 0.15

Comparable Variants