MakeItFrom.com
Menu (ESC)

EN AC-46400 Aluminum vs. 7049 Aluminum

Both EN AC-46400 aluminum and 7049 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-46400 aluminum and the bottom bar is 7049 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 77 to 120
140
Elastic (Young's, Tensile) Modulus, GPa 72
70
Elongation at Break, % 1.1 to 1.7
6.2 to 7.0
Fatigue Strength, MPa 75 to 85
160 to 170
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 170 to 310
510 to 530
Tensile Strength: Yield (Proof), MPa 110 to 270
420 to 450

Thermal Properties

Latent Heat of Fusion, J/g 520
370
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 610
640
Melting Onset (Solidus), °C 570
480
Specific Heat Capacity, J/kg-K 890
860
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
36
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
3.1
Embodied Carbon, kg CO2/kg material 7.8
8.1
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1070
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 4.9
31 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 500
1270 to 1440
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
45
Strength to Weight: Axial, points 18 to 32
46 to 47
Strength to Weight: Bending, points 26 to 38
46 to 47
Thermal Diffusivity, mm2/s 55
51
Thermal Shock Resistance, points 7.8 to 14
22 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.4 to 90.5
85.7 to 89.5
Chromium (Cr), % 0
0.1 to 0.22
Copper (Cu), % 0.8 to 1.3
1.2 to 1.9
Iron (Fe), % 0 to 0.8
0 to 0.35
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.25 to 0.65
2.0 to 2.9
Manganese (Mn), % 0.15 to 0.55
0 to 0.2
Nickel (Ni), % 0 to 0.2
0
Silicon (Si), % 8.3 to 9.7
0 to 0.25
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 0.8
7.2 to 8.2
Residuals, % 0 to 0.25
0 to 0.15