MakeItFrom.com
Menu (ESC)

EN AC-46400 Aluminum vs. EN 1.4905 Stainless Steel

EN AC-46400 aluminum belongs to the aluminum alloys classification, while EN 1.4905 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46400 aluminum and the bottom bar is EN 1.4905 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.1 to 1.7
19
Fatigue Strength, MPa 75 to 85
330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 170 to 310
740
Tensile Strength: Yield (Proof), MPa 110 to 270
510

Thermal Properties

Latent Heat of Fusion, J/g 520
270
Maximum Temperature: Mechanical, °C 170
660
Melting Completion (Liquidus), °C 610
1480
Melting Onset (Solidus), °C 570
1440
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 130
26
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
4.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 7.8
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1070
90

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 4.9
130
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 500
680
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 18 to 32
26
Strength to Weight: Bending, points 26 to 38
23
Thermal Diffusivity, mm2/s 55
7.0
Thermal Shock Resistance, points 7.8 to 14
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.4 to 90.5
0 to 0.040
Boron (B), % 0
0.00050 to 0.0050
Carbon (C), % 0
0.090 to 0.13
Chromium (Cr), % 0
8.5 to 9.5
Copper (Cu), % 0.8 to 1.3
0
Iron (Fe), % 0 to 0.8
86.2 to 88.8
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0.15 to 0.55
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.2
0.1 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.050 to 0.090
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 8.3 to 9.7
0.1 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0.9 to 1.1
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.25
0