MakeItFrom.com
Menu (ESC)

EN AC-46400 Aluminum vs. N06045 Nickel

EN AC-46400 aluminum belongs to the aluminum alloys classification, while N06045 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46400 aluminum and the bottom bar is N06045 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.1 to 1.7
37
Fatigue Strength, MPa 75 to 85
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 170 to 310
690
Tensile Strength: Yield (Proof), MPa 110 to 270
270

Thermal Properties

Latent Heat of Fusion, J/g 520
350
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 610
1350
Melting Onset (Solidus), °C 570
1300
Specific Heat Capacity, J/kg-K 890
480
Thermal Expansion, µm/m-K 22
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
42
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 7.8
6.9
Embodied Energy, MJ/kg 150
98
Embodied Water, L/kg 1070
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7 to 4.9
200
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 500
180
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 18 to 32
24
Strength to Weight: Bending, points 26 to 38
22
Thermal Shock Resistance, points 7.8 to 14
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.4 to 90.5
0
Carbon (C), % 0
0.050 to 0.12
Cerium (Ce), % 0
0.030 to 0.090
Chromium (Cr), % 0
26 to 29
Copper (Cu), % 0.8 to 1.3
0 to 0.3
Iron (Fe), % 0 to 0.8
21 to 25
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0.15 to 0.55
0 to 1.0
Nickel (Ni), % 0 to 0.2
45 to 50.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 8.3 to 9.7
2.5 to 3.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.25
0