MakeItFrom.com
Menu (ESC)

EN AC-46600 Aluminum vs. 2017A Aluminum

Both EN AC-46600 aluminum and 2017A aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-46600 aluminum and the bottom bar is 2017A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
71
Elongation at Break, % 1.1
2.2 to 14
Fatigue Strength, MPa 75
92 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 180
200 to 460
Tensile Strength: Yield (Proof), MPa 110
110 to 290

Thermal Properties

Latent Heat of Fusion, J/g 490
390
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 620
650
Melting Onset (Solidus), °C 560
510
Specific Heat Capacity, J/kg-K 890
880
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
34
Electrical Conductivity: Equal Weight (Specific), % IACS 94
100

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 2.8
3.0
Embodied Carbon, kg CO2/kg material 7.8
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1080
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
6.7 to 53
Resilience: Unit (Modulus of Resilience), kJ/m3 81
90 to 570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 18
19 to 42
Strength to Weight: Bending, points 25
26 to 44
Thermal Diffusivity, mm2/s 51
56
Thermal Shock Resistance, points 8.1
8.9 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.6 to 92.4
91.3 to 95.5
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 1.5 to 2.5
3.5 to 4.5
Iron (Fe), % 0 to 0.8
0 to 0.7
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.35
0.4 to 1.0
Manganese (Mn), % 0.15 to 0.65
0.4 to 1.0
Nickel (Ni), % 0 to 0.35
0
Silicon (Si), % 6.0 to 8.0
0.2 to 0.8
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0 to 0.25
Zinc (Zn), % 0 to 1.0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15