MakeItFrom.com
Menu (ESC)

EN AC-46600 Aluminum vs. 6101B Aluminum

Both EN AC-46600 aluminum and 6101B aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-46600 aluminum and the bottom bar is 6101B aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
68
Elongation at Break, % 1.1
9.1 to 13
Fatigue Strength, MPa 75
62 to 70
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 180
190 to 250
Tensile Strength: Yield (Proof), MPa 110
140 to 180

Thermal Properties

Latent Heat of Fusion, J/g 490
400
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 620
640
Melting Onset (Solidus), °C 560
630
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 130
210
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
57
Electrical Conductivity: Equal Weight (Specific), % IACS 94
190

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1080
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
20 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 81
140 to 240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 18
20 to 25
Strength to Weight: Bending, points 25
27 to 32
Thermal Diffusivity, mm2/s 51
87
Thermal Shock Resistance, points 8.1
8.5 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.6 to 92.4
98.2 to 99.3
Copper (Cu), % 1.5 to 2.5
0 to 0.050
Iron (Fe), % 0 to 0.8
0.1 to 0.3
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.35
0.35 to 0.6
Manganese (Mn), % 0.15 to 0.65
0 to 0.050
Nickel (Ni), % 0 to 0.35
0
Silicon (Si), % 6.0 to 8.0
0.3 to 0.6
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.1