MakeItFrom.com
Menu (ESC)

EN AC-46600 Aluminum vs. 6105 Aluminum

Both EN AC-46600 aluminum and 6105 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-46600 aluminum and the bottom bar is 6105 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
68
Elongation at Break, % 1.1
9.0 to 16
Fatigue Strength, MPa 75
95 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 180
190 to 280
Tensile Strength: Yield (Proof), MPa 110
120 to 270

Thermal Properties

Latent Heat of Fusion, J/g 490
410
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 620
650
Melting Onset (Solidus), °C 560
600
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 130
180 to 190
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
46 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 94
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1080
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
25 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 81
100 to 550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 18
20 to 29
Strength to Weight: Bending, points 25
28 to 35
Thermal Diffusivity, mm2/s 51
72 to 79
Thermal Shock Resistance, points 8.1
8.6 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.6 to 92.4
97.2 to 99
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 1.5 to 2.5
0 to 0.1
Iron (Fe), % 0 to 0.8
0 to 0.35
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.35
0.45 to 0.8
Manganese (Mn), % 0.15 to 0.65
0 to 0.1
Nickel (Ni), % 0 to 0.35
0
Silicon (Si), % 6.0 to 8.0
0.6 to 1.0
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0 to 0.1
Zinc (Zn), % 0 to 1.0
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15