MakeItFrom.com
Menu (ESC)

EN AC-46600 Aluminum vs. ASTM A387 Grade 91 Class 2

EN AC-46600 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 91 class 2 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46600 aluminum and the bottom bar is ASTM A387 grade 91 class 2.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 77
200
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.1
20
Fatigue Strength, MPa 75
330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 180
670
Tensile Strength: Yield (Proof), MPa 110
470

Thermal Properties

Latent Heat of Fusion, J/g 490
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 130
26
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 94
10

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.8
2.6
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1080
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
120
Resilience: Unit (Modulus of Resilience), kJ/m3 81
580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 25
22
Thermal Diffusivity, mm2/s 51
6.9
Thermal Shock Resistance, points 8.1
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.6 to 92.4
0 to 0.020
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Copper (Cu), % 1.5 to 2.5
0
Iron (Fe), % 0 to 0.8
87.3 to 90.3
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0.15 to 0.65
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0 to 0.35
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 6.0 to 8.0
0.2 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.15
0