MakeItFrom.com
Menu (ESC)

EN AC-47000 Aluminum vs. 238.0 Aluminum

Both EN AC-47000 aluminum and 238.0 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-47000 aluminum and the bottom bar is 238.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
76
Elongation at Break, % 1.7
1.5
Fatigue Strength, MPa 68
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
28
Tensile Strength: Ultimate (UTS), MPa 180
210
Tensile Strength: Yield (Proof), MPa 97
170

Thermal Properties

Latent Heat of Fusion, J/g 570
430
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 590
600
Melting Onset (Solidus), °C 570
510
Specific Heat Capacity, J/kg-K 900
840
Thermal Conductivity, W/m-K 130
100
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
25
Electrical Conductivity: Equal Weight (Specific), % IACS 110
67

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.6
3.4
Embodied Carbon, kg CO2/kg material 7.7
7.4
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 1040
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
2.9
Resilience: Unit (Modulus of Resilience), kJ/m3 65
180
Stiffness to Weight: Axial, points 16
12
Stiffness to Weight: Bending, points 54
42
Strength to Weight: Axial, points 19
17
Strength to Weight: Bending, points 27
23
Thermal Diffusivity, mm2/s 55
37
Thermal Shock Resistance, points 8.3
9.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.1 to 89.5
81.9 to 84.9
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 1.0
9.5 to 10.5
Iron (Fe), % 0 to 0.8
1.0 to 1.5
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0 to 0.25
Manganese (Mn), % 0.050 to 0.55
0
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 10.5 to 13.5
3.6 to 4.4
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.55
1.0 to 1.5
Residuals, % 0 to 0.25
0