MakeItFrom.com
Menu (ESC)

EN AC-47000 Aluminum vs. 6060 Aluminum

Both EN AC-47000 aluminum and 6060 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN AC-47000 aluminum and the bottom bar is 6060 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
68
Elongation at Break, % 1.7
9.0 to 16
Fatigue Strength, MPa 68
37 to 70
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 180
140 to 220
Tensile Strength: Yield (Proof), MPa 97
71 to 170

Thermal Properties

Latent Heat of Fusion, J/g 570
400
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 590
660
Melting Onset (Solidus), °C 570
610
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
210
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
54
Electrical Conductivity: Equal Weight (Specific), % IACS 110
180

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.7
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.5
13 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 65
37 to 210
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
50
Strength to Weight: Axial, points 19
14 to 23
Strength to Weight: Bending, points 27
22 to 30
Thermal Diffusivity, mm2/s 55
85
Thermal Shock Resistance, points 8.3
6.3 to 9.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.1 to 89.5
97.9 to 99.3
Chromium (Cr), % 0 to 0.1
0 to 0.050
Copper (Cu), % 0 to 1.0
0 to 0.1
Iron (Fe), % 0 to 0.8
0.1 to 0.3
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0.35 to 0.6
Manganese (Mn), % 0.050 to 0.55
0 to 0.1
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 10.5 to 13.5
0.3 to 0.6
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 0.55
0 to 0.15
Residuals, % 0 to 0.25
0 to 0.15