MakeItFrom.com
Menu (ESC)

EN AC-47100 Aluminum vs. 443.0 Aluminum

Both EN AC-47100 aluminum and 443.0 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-47100 aluminum and the bottom bar is 443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
41
Elastic (Young's, Tensile) Modulus, GPa 73
71
Elongation at Break, % 1.1
5.6
Fatigue Strength, MPa 110
55
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 270
150
Tensile Strength: Yield (Proof), MPa 160
65

Thermal Properties

Latent Heat of Fusion, J/g 570
470
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 590
630
Melting Onset (Solidus), °C 560
580
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
38
Electrical Conductivity: Equal Weight (Specific), % IACS 100
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.6
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1030
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 170
30
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
52
Strength to Weight: Axial, points 28
16
Strength to Weight: Bending, points 35
23
Thermal Diffusivity, mm2/s 54
61
Thermal Shock Resistance, points 12
6.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 81.4 to 88.8
90.7 to 95.5
Chromium (Cr), % 0 to 0.1
0 to 0.25
Copper (Cu), % 0.7 to 1.2
0 to 0.6
Iron (Fe), % 0 to 1.3
0 to 0.8
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0 to 0.050
Manganese (Mn), % 0 to 0.55
0 to 0.5
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 10.5 to 13.5
4.5 to 6.0
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.55
0 to 0.5
Residuals, % 0 to 0.25
0 to 0.35