MakeItFrom.com
Menu (ESC)

EN AC-47100 Aluminum vs. 6005A Aluminum

Both EN AC-47100 aluminum and 6005A aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-47100 aluminum and the bottom bar is 6005A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
69
Elongation at Break, % 1.1
8.6 to 17
Fatigue Strength, MPa 110
55 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 270
190 to 300
Tensile Strength: Yield (Proof), MPa 160
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 570
410
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 590
650
Melting Onset (Solidus), °C 560
600
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 130
180 to 190
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
47 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 100
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.6
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1030
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 170
76 to 530
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
50
Strength to Weight: Axial, points 28
20 to 30
Strength to Weight: Bending, points 35
27 to 36
Thermal Diffusivity, mm2/s 54
72 to 79
Thermal Shock Resistance, points 12
8.6 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 81.4 to 88.8
96.5 to 99.1
Chromium (Cr), % 0 to 0.1
0 to 0.3
Copper (Cu), % 0.7 to 1.2
0 to 0.3
Iron (Fe), % 0 to 1.3
0 to 0.35
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0.4 to 0.7
Manganese (Mn), % 0 to 0.55
0 to 0.5
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 10.5 to 13.5
0.5 to 0.9
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 0.55
0 to 0.2
Residuals, % 0 to 0.25
0 to 0.15