MakeItFrom.com
Menu (ESC)

EN AC-47100 Aluminum vs. A206.0 Aluminum

Both EN AC-47100 aluminum and A206.0 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-47100 aluminum and the bottom bar is A206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 73
70
Elongation at Break, % 1.1
4.2 to 10
Fatigue Strength, MPa 110
90 to 180
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 270
390 to 440
Tensile Strength: Yield (Proof), MPa 160
250 to 380

Thermal Properties

Latent Heat of Fusion, J/g 570
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 590
670
Melting Onset (Solidus), °C 560
550
Specific Heat Capacity, J/kg-K 890
880
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
30
Electrical Conductivity: Equal Weight (Specific), % IACS 100
90

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
3.0
Embodied Carbon, kg CO2/kg material 7.6
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1030
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
16 to 37
Resilience: Unit (Modulus of Resilience), kJ/m3 170
440 to 1000
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
46
Strength to Weight: Axial, points 28
36 to 41
Strength to Weight: Bending, points 35
39 to 43
Thermal Diffusivity, mm2/s 54
48
Thermal Shock Resistance, points 12
17 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 81.4 to 88.8
93.9 to 95.7
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.7 to 1.2
4.2 to 5.0
Iron (Fe), % 0 to 1.3
0 to 0.1
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0 to 0.15
Manganese (Mn), % 0 to 0.55
0 to 0.2
Nickel (Ni), % 0 to 0.3
0 to 0.050
Silicon (Si), % 10.5 to 13.5
0 to 0.050
Tin (Sn), % 0 to 0.1
0 to 0.050
Titanium (Ti), % 0 to 0.2
0.15 to 0.3
Zinc (Zn), % 0 to 0.55
0 to 0.1
Residuals, % 0 to 0.25
0 to 0.15