MakeItFrom.com
Menu (ESC)

EN AC-47100 Aluminum vs. ACI-ASTM CK35MN Steel

EN AC-47100 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CK35MN steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-47100 aluminum and the bottom bar is ACI-ASTM CK35MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
190
Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 1.1
40
Fatigue Strength, MPa 110
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Tensile Strength: Ultimate (UTS), MPa 270
650
Tensile Strength: Yield (Proof), MPa 160
310

Thermal Properties

Latent Heat of Fusion, J/g 570
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 7.6
5.9
Embodied Energy, MJ/kg 140
81
Embodied Water, L/kg 1030
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
210
Resilience: Unit (Modulus of Resilience), kJ/m3 170
240
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 28
22
Strength to Weight: Bending, points 35
21
Thermal Diffusivity, mm2/s 54
3.3
Thermal Shock Resistance, points 12
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 81.4 to 88.8
0
Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0 to 0.1
22 to 24
Copper (Cu), % 0.7 to 1.2
0 to 0.4
Iron (Fe), % 0 to 1.3
43.4 to 51.8
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 6.8
Nickel (Ni), % 0 to 0.3
20 to 22
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 10.5 to 13.5
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.55
0
Residuals, % 0 to 0.25
0