MakeItFrom.com
Menu (ESC)

EN AC-47100 Aluminum vs. AISI 316LN Stainless Steel

EN AC-47100 aluminum belongs to the aluminum alloys classification, while AISI 316LN stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-47100 aluminum and the bottom bar is AISI 316LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
180
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.1
42
Fatigue Strength, MPa 110
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
82
Tensile Strength: Ultimate (UTS), MPa 270
590
Tensile Strength: Yield (Proof), MPa 160
230

Thermal Properties

Latent Heat of Fusion, J/g 570
290
Maximum Temperature: Mechanical, °C 170
940
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.6
3.8
Embodied Energy, MJ/kg 140
53
Embodied Water, L/kg 1030
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
200
Resilience: Unit (Modulus of Resilience), kJ/m3 170
130
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 28
21
Strength to Weight: Bending, points 35
20
Thermal Diffusivity, mm2/s 54
4.1
Thermal Shock Resistance, points 12
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 81.4 to 88.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
16 to 18
Copper (Cu), % 0.7 to 1.2
0
Iron (Fe), % 0 to 1.3
62 to 71.9
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.3
10 to 14
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 10.5 to 13.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.55
0
Residuals, % 0 to 0.25
0