MakeItFrom.com
Menu (ESC)

EN AC-47100 Aluminum vs. AISI 405 Stainless Steel

EN AC-47100 aluminum belongs to the aluminum alloys classification, while AISI 405 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-47100 aluminum and the bottom bar is AISI 405 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
170
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.1
22
Fatigue Strength, MPa 110
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 270
470
Tensile Strength: Yield (Proof), MPa 160
200

Thermal Properties

Latent Heat of Fusion, J/g 570
280
Maximum Temperature: Mechanical, °C 170
820
Melting Completion (Liquidus), °C 590
1530
Melting Onset (Solidus), °C 560
1480
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 130
30
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 100
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 7.6
2.0
Embodied Energy, MJ/kg 140
28
Embodied Water, L/kg 1030
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
84
Resilience: Unit (Modulus of Resilience), kJ/m3 170
100
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 28
17
Strength to Weight: Bending, points 35
17
Thermal Diffusivity, mm2/s 54
8.1
Thermal Shock Resistance, points 12
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 81.4 to 88.8
0.1 to 0.3
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
11.5 to 14.5
Copper (Cu), % 0.7 to 1.2
0
Iron (Fe), % 0 to 1.3
82.5 to 88.4
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0 to 0.35
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Nickel (Ni), % 0 to 0.3
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 13.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.55
0
Residuals, % 0 to 0.25
0