MakeItFrom.com
Menu (ESC)

EN AC-48000 Aluminum vs. 7010 Aluminum

Both EN AC-48000 aluminum and 7010 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-48000 aluminum and the bottom bar is 7010 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
70
Elongation at Break, % 1.0
3.9 to 6.8
Fatigue Strength, MPa 85 to 86
160 to 190
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 28
26
Tensile Strength: Ultimate (UTS), MPa 220 to 310
520 to 590
Tensile Strength: Yield (Proof), MPa 210 to 270
410 to 540

Thermal Properties

Latent Heat of Fusion, J/g 570
380
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 600
630
Melting Onset (Solidus), °C 560
480
Specific Heat Capacity, J/kg-K 890
860
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
40
Electrical Conductivity: Equal Weight (Specific), % IACS 110
120

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 7.9
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1030
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2 to 3.0
22 to 33
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 510
1230 to 2130
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
45
Strength to Weight: Axial, points 23 to 33
47 to 54
Strength to Weight: Bending, points 31 to 39
47 to 52
Thermal Diffusivity, mm2/s 54
58
Thermal Shock Resistance, points 10 to 15
22 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 80.4 to 87.2
87.9 to 90.6
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 0.8 to 1.5
1.5 to 2.0
Iron (Fe), % 0 to 0.7
0 to 0.15
Magnesium (Mg), % 0.8 to 1.5
2.1 to 2.6
Manganese (Mn), % 0 to 0.35
0 to 0.1
Nickel (Ni), % 0.7 to 1.3
0 to 0.050
Silicon (Si), % 10.5 to 13.5
0 to 0.12
Titanium (Ti), % 0 to 0.25
0 to 0.060
Zinc (Zn), % 0 to 0.35
5.7 to 6.7
Zirconium (Zr), % 0
0.1 to 0.16
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants