MakeItFrom.com
Menu (ESC)

EN AC-48000 Aluminum vs. ACI-ASTM CC50 Steel

EN AC-48000 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CC50 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48000 aluminum and the bottom bar is ACI-ASTM CC50 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
210
Elastic (Young's, Tensile) Modulus, GPa 73
200
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 28
80
Tensile Strength: Ultimate (UTS), MPa 220 to 310
430

Thermal Properties

Latent Heat of Fusion, J/g 570
300
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 600
1420
Melting Onset (Solidus), °C 560
1370
Specific Heat Capacity, J/kg-K 890
490
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
14
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 7.9
2.7
Embodied Energy, MJ/kg 140
39
Embodied Water, L/kg 1030
170

Common Calculations

Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
26
Strength to Weight: Axial, points 23 to 33
16
Strength to Weight: Bending, points 31 to 39
17
Thermal Diffusivity, mm2/s 54
4.5
Thermal Shock Resistance, points 10 to 15
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 80.4 to 87.2
0
Carbon (C), % 0
0 to 0.5
Chromium (Cr), % 0
26 to 30
Copper (Cu), % 0.8 to 1.5
0
Iron (Fe), % 0 to 0.7
62.9 to 74
Magnesium (Mg), % 0.8 to 1.5
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 0.7 to 1.3
0 to 4.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 13.5
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0