MakeItFrom.com
Menu (ESC)

EN AC-48000 Aluminum vs. AISI 440A Stainless Steel

EN AC-48000 aluminum belongs to the aluminum alloys classification, while AISI 440A stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48000 aluminum and the bottom bar is AISI 440A stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
5.0 to 20
Fatigue Strength, MPa 85 to 86
270 to 790
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Tensile Strength: Ultimate (UTS), MPa 220 to 310
730 to 1790
Tensile Strength: Yield (Proof), MPa 210 to 270
420 to 1650

Thermal Properties

Latent Heat of Fusion, J/g 570
280
Maximum Temperature: Mechanical, °C 190
760
Melting Completion (Liquidus), °C 600
1480
Melting Onset (Solidus), °C 560
1370
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 130
23
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 7.9
2.2
Embodied Energy, MJ/kg 140
31
Embodied Water, L/kg 1030
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2 to 3.0
87 to 120
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 23 to 33
26 to 65
Strength to Weight: Bending, points 31 to 39
23 to 43
Thermal Diffusivity, mm2/s 54
6.2
Thermal Shock Resistance, points 10 to 15
26 to 65

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 80.4 to 87.2
0
Carbon (C), % 0
0.6 to 0.75
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0.8 to 1.5
0
Iron (Fe), % 0 to 0.7
78.4 to 83.4
Magnesium (Mg), % 0.8 to 1.5
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0.7 to 1.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 13.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0