MakeItFrom.com
Menu (ESC)

EN AC-48000 Aluminum vs. EN 1.8152 Steel

EN AC-48000 aluminum belongs to the aluminum alloys classification, while EN 1.8152 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48000 aluminum and the bottom bar is EN 1.8152 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
200 to 540
Elastic (Young's, Tensile) Modulus, GPa 73
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
72
Tensile Strength: Ultimate (UTS), MPa 220 to 310
660 to 2010

Thermal Properties

Latent Heat of Fusion, J/g 570
270
Maximum Temperature: Mechanical, °C 190
410
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 130
47
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.2
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 7.9
1.8
Embodied Energy, MJ/kg 140
25
Embodied Water, L/kg 1030
49

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 23 to 33
24 to 72
Strength to Weight: Bending, points 31 to 39
22 to 46
Thermal Diffusivity, mm2/s 54
13
Thermal Shock Resistance, points 10 to 15
20 to 60

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 80.4 to 87.2
0
Carbon (C), % 0
0.51 to 0.59
Chromium (Cr), % 0
0.5 to 0.8
Copper (Cu), % 0.8 to 1.5
0
Iron (Fe), % 0 to 0.7
96 to 97.2
Magnesium (Mg), % 0.8 to 1.5
0
Manganese (Mn), % 0 to 0.35
0.5 to 0.8
Nickel (Ni), % 0.7 to 1.3
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 10.5 to 13.5
1.2 to 1.6
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.1 to 0.2
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0