MakeItFrom.com
Menu (ESC)

EN AC-48000 Aluminum vs. EN 2.4879 Cast Nickel

EN AC-48000 aluminum belongs to the aluminum alloys classification, while EN 2.4879 cast nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48000 aluminum and the bottom bar is EN 2.4879 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
3.4
Fatigue Strength, MPa 85 to 86
110
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
80
Tensile Strength: Ultimate (UTS), MPa 220 to 310
490
Tensile Strength: Yield (Proof), MPa 210 to 270
270

Thermal Properties

Latent Heat of Fusion, J/g 570
330
Maximum Temperature: Mechanical, °C 190
1150
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 890
460
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 21
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 7.9
8.3
Embodied Energy, MJ/kg 140
120
Embodied Water, L/kg 1030
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2 to 3.0
14
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 510
180
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 23 to 33
16
Strength to Weight: Bending, points 31 to 39
16
Thermal Diffusivity, mm2/s 54
2.8
Thermal Shock Resistance, points 10 to 15
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 80.4 to 87.2
0
Carbon (C), % 0
0.35 to 0.55
Chromium (Cr), % 0
27 to 30
Copper (Cu), % 0.8 to 1.5
0
Iron (Fe), % 0 to 0.7
9.4 to 20.7
Magnesium (Mg), % 0.8 to 1.5
0
Manganese (Mn), % 0 to 0.35
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0.7 to 1.3
47 to 50
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 13.5
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
4.0 to 6.0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0