MakeItFrom.com
Menu (ESC)

EN AC-48000 Aluminum vs. S42300 Stainless Steel

EN AC-48000 aluminum belongs to the aluminum alloys classification, while S42300 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48000 aluminum and the bottom bar is S42300 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
330
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
9.1
Fatigue Strength, MPa 85 to 86
440
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Tensile Strength: Ultimate (UTS), MPa 220 to 310
1100
Tensile Strength: Yield (Proof), MPa 210 to 270
850

Thermal Properties

Latent Heat of Fusion, J/g 570
270
Maximum Temperature: Mechanical, °C 190
750
Melting Completion (Liquidus), °C 600
1470
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 130
25
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
4.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
5.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.9
3.2
Embodied Energy, MJ/kg 140
44
Embodied Water, L/kg 1030
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2 to 3.0
93
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 510
1840
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 23 to 33
39
Strength to Weight: Bending, points 31 to 39
30
Thermal Diffusivity, mm2/s 54
6.8
Thermal Shock Resistance, points 10 to 15
40

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 80.4 to 87.2
0
Carbon (C), % 0
0.27 to 0.32
Chromium (Cr), % 0
11 to 12
Copper (Cu), % 0.8 to 1.5
0
Iron (Fe), % 0 to 0.7
82 to 85.1
Magnesium (Mg), % 0.8 to 1.5
0
Manganese (Mn), % 0 to 0.35
1.0 to 1.4
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0.7 to 1.3
0 to 0.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 10.5 to 13.5
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0