MakeItFrom.com
Menu (ESC)

EN AC-48100 Aluminum vs. 1060 Aluminum

Both EN AC-48100 aluminum and 1060 aluminum are aluminum alloys. They have 76% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN AC-48100 aluminum and the bottom bar is 1060 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 76
68
Elongation at Break, % 1.1
1.1 to 30
Fatigue Strength, MPa 120 to 130
15 to 50
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 29
26
Tensile Strength: Ultimate (UTS), MPa 240 to 330
67 to 130
Tensile Strength: Yield (Proof), MPa 190 to 300
17 to 110

Thermal Properties

Latent Heat of Fusion, J/g 640
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 580
660
Melting Onset (Solidus), °C 470
650
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 130
230
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
62
Electrical Conductivity: Equal Weight (Specific), % IACS 87
210

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 7.3
8.3
Embodied Energy, MJ/kg 130
160
Embodied Water, L/kg 940
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 3.6
0.57 to 37
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
2.1 to 89
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 24 to 33
6.9 to 13
Strength to Weight: Bending, points 31 to 38
14 to 21
Thermal Diffusivity, mm2/s 55
96
Thermal Shock Resistance, points 11 to 16
3.0 to 5.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 72.1 to 79.8
99.6 to 100
Copper (Cu), % 4.0 to 5.0
0 to 0.050
Iron (Fe), % 0 to 1.3
0 to 0.35
Magnesium (Mg), % 0.25 to 0.65
0 to 0.030
Manganese (Mn), % 0 to 0.5
0 to 0.030
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 16 to 18
0 to 0.25
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 1.5
0 to 0.050
Residuals, % 0 to 0.25
0