MakeItFrom.com
Menu (ESC)

EN AC-48100 Aluminum vs. 7175 Aluminum

Both EN AC-48100 aluminum and 7175 aluminum are aluminum alloys. They have 79% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-48100 aluminum and the bottom bar is 7175 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 76
70
Elongation at Break, % 1.1
3.8 to 5.9
Fatigue Strength, MPa 120 to 130
150 to 180
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 29
26
Tensile Strength: Ultimate (UTS), MPa 240 to 330
520 to 570
Tensile Strength: Yield (Proof), MPa 190 to 300
430 to 490

Thermal Properties

Latent Heat of Fusion, J/g 640
380
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 580
640
Melting Onset (Solidus), °C 470
480
Specific Heat Capacity, J/kg-K 880
870
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 20
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
33
Electrical Conductivity: Equal Weight (Specific), % IACS 87
99

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 2.8
3.0
Embodied Carbon, kg CO2/kg material 7.3
8.2
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 940
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 3.6
18 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
1310 to 1730
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 51
46
Strength to Weight: Axial, points 24 to 33
48 to 52
Strength to Weight: Bending, points 31 to 38
48 to 51
Thermal Diffusivity, mm2/s 55
53
Thermal Shock Resistance, points 11 to 16
23 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 72.1 to 79.8
88 to 91.4
Chromium (Cr), % 0
0.18 to 0.28
Copper (Cu), % 4.0 to 5.0
1.2 to 2.0
Iron (Fe), % 0 to 1.3
0 to 0.2
Magnesium (Mg), % 0.25 to 0.65
2.1 to 2.9
Manganese (Mn), % 0 to 0.5
0 to 0.1
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 16 to 18
0 to 0.15
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0 to 0.1
Zinc (Zn), % 0 to 1.5
5.1 to 6.1
Residuals, % 0 to 0.25
0 to 0.15