MakeItFrom.com
Menu (ESC)

EN AC-48100 Aluminum vs. AISI 316L Stainless Steel

EN AC-48100 aluminum belongs to the aluminum alloys classification, while AISI 316L stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48100 aluminum and the bottom bar is AISI 316L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 140
170 to 350
Elastic (Young's, Tensile) Modulus, GPa 76
200
Elongation at Break, % 1.1
9.0 to 50
Fatigue Strength, MPa 120 to 130
170 to 450
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 29
78
Tensile Strength: Ultimate (UTS), MPa 240 to 330
530 to 1160
Tensile Strength: Yield (Proof), MPa 190 to 300
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 640
290
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 580
1400
Melting Onset (Solidus), °C 470
1380
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 87
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
19
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 7.3
3.9
Embodied Energy, MJ/kg 130
53
Embodied Water, L/kg 940
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 3.6
77 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
93 to 1880
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 24 to 33
19 to 41
Strength to Weight: Bending, points 31 to 38
18 to 31
Thermal Diffusivity, mm2/s 55
4.1
Thermal Shock Resistance, points 11 to 16
12 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 72.1 to 79.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.3
62 to 72
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.3
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 16 to 18
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.25
0