MakeItFrom.com
Menu (ESC)

EN AC-48100 Aluminum vs. EN 1.4462 Stainless Steel

EN AC-48100 aluminum belongs to the aluminum alloys classification, while EN 1.4462 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48100 aluminum and the bottom bar is EN 1.4462 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 140
240
Elastic (Young's, Tensile) Modulus, GPa 76
200
Elongation at Break, % 1.1
26
Fatigue Strength, MPa 120 to 130
370
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 29
80
Tensile Strength: Ultimate (UTS), MPa 240 to 330
780
Tensile Strength: Yield (Proof), MPa 190 to 300
520

Thermal Properties

Latent Heat of Fusion, J/g 640
300
Maximum Temperature: Mechanical, °C 170
1060
Melting Completion (Liquidus), °C 580
1450
Melting Onset (Solidus), °C 470
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 87
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
17
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.3
3.6
Embodied Energy, MJ/kg 130
49
Embodied Water, L/kg 940
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 3.6
180
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
670
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 24 to 33
28
Strength to Weight: Bending, points 31 to 38
24
Thermal Diffusivity, mm2/s 55
4.0
Thermal Shock Resistance, points 11 to 16
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 72.1 to 79.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
21 to 23
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.3
63.7 to 71.9
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 0.3
4.5 to 6.5
Nitrogen (N), % 0
0.1 to 0.22
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 16 to 18
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.25
0