MakeItFrom.com
Menu (ESC)

EN AC-48100 Aluminum vs. Grade 361 Molybdenum

EN AC-48100 aluminum belongs to the aluminum alloys classification, while grade 361 molybdenum belongs to the otherwise unclassified metals. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48100 aluminum and the bottom bar is grade 361 molybdenum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 76
310
Elongation at Break, % 1.1
6.3
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 29
120
Tensile Strength: Ultimate (UTS), MPa 240 to 330
620
Tensile Strength: Yield (Proof), MPa 190 to 300
530

Thermal Properties

Latent Heat of Fusion, J/g 640
370
Specific Heat Capacity, J/kg-K 880
250
Thermal Expansion, µm/m-K 20
7.0

Otherwise Unclassified Properties

Density, g/cm3 2.8
10
Embodied Carbon, kg CO2/kg material 7.3
28
Embodied Energy, MJ/kg 130
330
Embodied Water, L/kg 940
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 3.6
37
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
450
Stiffness to Weight: Axial, points 15
17
Stiffness to Weight: Bending, points 51
22
Strength to Weight: Axial, points 24 to 33
17
Strength to Weight: Bending, points 31 to 38
16
Thermal Shock Resistance, points 11 to 16
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 72.1 to 79.8
0
Carbon (C), % 0
0 to 0.010
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 1.3
0 to 0.010
Magnesium (Mg), % 0.25 to 0.65
0
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 0
99.9 to 100
Nickel (Ni), % 0 to 0.3
0 to 0.0050
Nitrogen (N), % 0
0 to 0.0020
Oxygen (O), % 0
0 to 0.0070
Silicon (Si), % 16 to 18
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.25
0