MakeItFrom.com
Menu (ESC)

EN AC-48100 Aluminum vs. C19800 Copper

EN AC-48100 aluminum belongs to the aluminum alloys classification, while C19800 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-48100 aluminum and the bottom bar is C19800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 76
110
Elongation at Break, % 1.1
9.0 to 12
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 29
43
Tensile Strength: Ultimate (UTS), MPa 240 to 330
430 to 550
Tensile Strength: Yield (Proof), MPa 190 to 300
420 to 550

Thermal Properties

Latent Heat of Fusion, J/g 640
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 580
1070
Melting Onset (Solidus), °C 470
1050
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 130
260
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
61
Electrical Conductivity: Equal Weight (Specific), % IACS 87
62

Otherwise Unclassified Properties

Base Metal Price, % relative 11
30
Density, g/cm3 2.8
8.9
Embodied Carbon, kg CO2/kg material 7.3
2.8
Embodied Energy, MJ/kg 130
43
Embodied Water, L/kg 940
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3 to 3.6
49 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
770 to 1320
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 24 to 33
14 to 17
Strength to Weight: Bending, points 31 to 38
14 to 17
Thermal Diffusivity, mm2/s 55
75
Thermal Shock Resistance, points 11 to 16
15 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 72.1 to 79.8
0
Copper (Cu), % 4.0 to 5.0
95.7 to 99.47
Iron (Fe), % 0 to 1.3
0.020 to 0.5
Magnesium (Mg), % 0.25 to 0.65
0.1 to 1.0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.3
0
Phosphorus (P), % 0
0.010 to 0.1
Silicon (Si), % 16 to 18
0
Tin (Sn), % 0 to 0.15
0.1 to 1.0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.5
0.3 to 1.5
Residuals, % 0 to 0.25
0 to 0.2