MakeItFrom.com
Menu (ESC)

EN AC-51200 Aluminum vs. 7049A Aluminum

Both EN AC-51200 aluminum and 7049A aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-51200 aluminum and the bottom bar is 7049A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
71
Elongation at Break, % 1.1
5.0 to 5.7
Fatigue Strength, MPa 100
180
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 25
27
Tensile Strength: Ultimate (UTS), MPa 220
580 to 590
Tensile Strength: Yield (Proof), MPa 150
500 to 530

Thermal Properties

Latent Heat of Fusion, J/g 410
370
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 570
430
Specific Heat Capacity, J/kg-K 910
850
Thermal Conductivity, W/m-K 92
130
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
40
Electrical Conductivity: Equal Weight (Specific), % IACS 74
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.6
3.1
Embodied Carbon, kg CO2/kg material 9.6
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
28 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 160
1800 to 1990
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
44
Strength to Weight: Axial, points 24
52 to 53
Strength to Weight: Bending, points 31
50 to 51
Thermal Diffusivity, mm2/s 39
50
Thermal Shock Resistance, points 10
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 84.5 to 92
84.6 to 89.5
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 0 to 0.1
1.2 to 1.9
Iron (Fe), % 0 to 1.0
0 to 0.5
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 8.0 to 10.5
2.1 to 3.1
Manganese (Mn), % 0 to 0.55
0 to 0.5
Nickel (Ni), % 0 to 0.1
0
Silicon (Si), % 0 to 2.5
0 to 0.4
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.25
7.2 to 8.4
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15