MakeItFrom.com
Menu (ESC)

EN AC-51200 Aluminum vs. 7178 Aluminum

Both EN AC-51200 aluminum and 7178 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-51200 aluminum and the bottom bar is 7178 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
71
Elongation at Break, % 1.1
4.5 to 12
Fatigue Strength, MPa 100
120 to 210
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 25
27
Tensile Strength: Ultimate (UTS), MPa 220
240 to 640
Tensile Strength: Yield (Proof), MPa 150
120 to 560

Thermal Properties

Latent Heat of Fusion, J/g 410
370
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 570
480
Specific Heat Capacity, J/kg-K 910
860
Thermal Conductivity, W/m-K 92
130
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
31
Electrical Conductivity: Equal Weight (Specific), % IACS 74
91

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.6
3.1
Embodied Carbon, kg CO2/kg material 9.6
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
24 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 160
110 to 2220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
45
Strength to Weight: Axial, points 24
21 to 58
Strength to Weight: Bending, points 31
28 to 54
Thermal Diffusivity, mm2/s 39
47
Thermal Shock Resistance, points 10
10 to 28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 84.5 to 92
85.4 to 89.5
Chromium (Cr), % 0
0.18 to 0.28
Copper (Cu), % 0 to 0.1
1.6 to 2.4
Iron (Fe), % 0 to 1.0
0 to 0.5
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 8.0 to 10.5
2.4 to 3.1
Manganese (Mn), % 0 to 0.55
0 to 0.3
Nickel (Ni), % 0 to 0.1
0
Silicon (Si), % 0 to 2.5
0 to 0.4
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.25
6.3 to 7.3
Residuals, % 0 to 0.15
0 to 0.15