MakeItFrom.com
Menu (ESC)

EN AC-51200 Aluminum vs. S64512 Stainless Steel

EN AC-51200 aluminum belongs to the aluminum alloys classification, while S64512 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-51200 aluminum and the bottom bar is S64512 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
330
Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 1.1
17
Fatigue Strength, MPa 100
540
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
76
Tensile Strength: Ultimate (UTS), MPa 220
1140
Tensile Strength: Yield (Proof), MPa 150
890

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 92
28
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 22
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 74
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.6
3.3
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1150
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.2
180
Resilience: Unit (Modulus of Resilience), kJ/m3 160
2020
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 24
40
Strength to Weight: Bending, points 31
31
Thermal Diffusivity, mm2/s 39
7.5
Thermal Shock Resistance, points 10
42

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 84.5 to 92
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 1.0
80.6 to 84.7
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 8.0 to 10.5
0
Manganese (Mn), % 0 to 0.55
0.5 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 0.1
2.0 to 3.0
Nitrogen (N), % 0
0.010 to 0.050
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 2.5
0 to 0.35
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.25 to 0.4
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0