MakeItFrom.com
Menu (ESC)

EN AC-51300 Aluminum vs. 1080A Aluminum

Both EN AC-51300 aluminum and 1080A aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-51300 aluminum and the bottom bar is 1080A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
18 to 40
Elastic (Young's, Tensile) Modulus, GPa 67
68
Elongation at Break, % 3.7
2.3 to 34
Fatigue Strength, MPa 78
18 to 50
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Tensile Strength: Ultimate (UTS), MPa 190
74 to 140
Tensile Strength: Yield (Proof), MPa 110
17 to 120

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 600
640
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 110
230
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
62
Electrical Conductivity: Equal Weight (Specific), % IACS 100
200

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 9.1
8.3
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1180
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
3.1 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 87
2.1 to 100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 20
7.6 to 15
Strength to Weight: Bending, points 28
14 to 22
Thermal Diffusivity, mm2/s 45
94
Thermal Shock Resistance, points 8.6
3.3 to 6.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.4 to 95.5
99.8 to 100
Copper (Cu), % 0 to 0.1
0 to 0.030
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.55
0 to 0.15
Magnesium (Mg), % 4.5 to 6.5
0 to 0.020
Manganese (Mn), % 0 to 0.45
0 to 0.020
Silicon (Si), % 0 to 0.55
0 to 0.15
Titanium (Ti), % 0 to 0.2
0 to 0.020
Zinc (Zn), % 0 to 0.1
0 to 0.060
Residuals, % 0 to 0.15
0