MakeItFrom.com
Menu (ESC)

EN AC-51300 Aluminum vs. 2007 Aluminum

Both EN AC-51300 aluminum and 2007 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-51300 aluminum and the bottom bar is 2007 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
71
Elongation at Break, % 3.7
5.6 to 8.0
Fatigue Strength, MPa 78
91 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Tensile Strength: Ultimate (UTS), MPa 190
370 to 420
Tensile Strength: Yield (Proof), MPa 110
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 600
510
Specific Heat Capacity, J/kg-K 910
870
Thermal Conductivity, W/m-K 110
130
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
47
Electrical Conductivity: Equal Weight (Specific), % IACS 100
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
3.1
Embodied Carbon, kg CO2/kg material 9.1
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 87
390 to 530
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
44
Strength to Weight: Axial, points 20
33 to 38
Strength to Weight: Bending, points 28
37 to 40
Thermal Diffusivity, mm2/s 45
48
Thermal Shock Resistance, points 8.6
16 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.4 to 95.5
87.5 to 95
Bismuth (Bi), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.1
3.3 to 4.6
Iron (Fe), % 0 to 0.55
0 to 0.8
Lead (Pb), % 0
0.8 to 1.5
Magnesium (Mg), % 4.5 to 6.5
0.4 to 1.8
Manganese (Mn), % 0 to 0.45
0.5 to 1.0
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0 to 0.55
0 to 0.8
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.8
Residuals, % 0 to 0.15
0 to 0.3