MakeItFrom.com
Menu (ESC)

EN AC-51300 Aluminum vs. 360.0 Aluminum

Both EN AC-51300 aluminum and 360.0 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 89% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-51300 aluminum and the bottom bar is 360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
75
Elastic (Young's, Tensile) Modulus, GPa 67
72
Elongation at Break, % 3.7
2.5
Fatigue Strength, MPa 78
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Tensile Strength: Ultimate (UTS), MPa 190
300
Tensile Strength: Yield (Proof), MPa 110
170

Thermal Properties

Latent Heat of Fusion, J/g 400
530
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
590
Melting Onset (Solidus), °C 600
570
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 110
130
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
34
Electrical Conductivity: Equal Weight (Specific), % IACS 100
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 9.1
7.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
6.4
Resilience: Unit (Modulus of Resilience), kJ/m3 87
200
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
53
Strength to Weight: Axial, points 20
32
Strength to Weight: Bending, points 28
38
Thermal Diffusivity, mm2/s 45
55
Thermal Shock Resistance, points 8.6
14

Alloy Composition

Aluminum (Al), % 91.4 to 95.5
85.1 to 90.6
Copper (Cu), % 0 to 0.1
0 to 0.6
Iron (Fe), % 0 to 0.55
0 to 2.0
Magnesium (Mg), % 4.5 to 6.5
0.4 to 0.6
Manganese (Mn), % 0 to 0.45
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0 to 0.55
9.0 to 10
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 0.5
Residuals, % 0 to 0.15
0 to 0.25