MakeItFrom.com
Menu (ESC)

EN AC-51300 Aluminum vs. 5040 Aluminum

Both EN AC-51300 aluminum and 5040 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-51300 aluminum and the bottom bar is 5040 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
66 to 74
Elastic (Young's, Tensile) Modulus, GPa 67
70
Elongation at Break, % 3.7
5.7 to 6.8
Fatigue Strength, MPa 78
100 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Tensile Strength: Ultimate (UTS), MPa 190
240 to 260
Tensile Strength: Yield (Proof), MPa 110
190 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 600
600
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 110
160
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
41
Electrical Conductivity: Equal Weight (Specific), % IACS 100
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 9.1
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
14 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 87
260 to 380
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 20
24 to 26
Strength to Weight: Bending, points 28
31 to 32
Thermal Diffusivity, mm2/s 45
64
Thermal Shock Resistance, points 8.6
10 to 11

Alloy Composition

Aluminum (Al), % 91.4 to 95.5
95.2 to 98
Chromium (Cr), % 0
0.1 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.55
0 to 0.7
Magnesium (Mg), % 4.5 to 6.5
1.0 to 1.5
Manganese (Mn), % 0 to 0.45
0.9 to 1.4
Silicon (Si), % 0 to 0.55
0 to 0.3
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15