MakeItFrom.com
Menu (ESC)

EN AC-51300 Aluminum vs. 6063 Aluminum

Both EN AC-51300 aluminum and 6063 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-51300 aluminum and the bottom bar is 6063 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
25 to 95
Elastic (Young's, Tensile) Modulus, GPa 67
68
Elongation at Break, % 3.7
7.3 to 21
Fatigue Strength, MPa 78
39 to 95
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Tensile Strength: Ultimate (UTS), MPa 190
110 to 300
Tensile Strength: Yield (Proof), MPa 110
49 to 270

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 600
620
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 110
190 to 220
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
49 to 58
Electrical Conductivity: Equal Weight (Specific), % IACS 100
160 to 190

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 9.1
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
13 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 87
18 to 540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 20
11 to 31
Strength to Weight: Bending, points 28
18 to 37
Thermal Diffusivity, mm2/s 45
79 to 89
Thermal Shock Resistance, points 8.6
4.8 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.4 to 95.5
97.5 to 99.4
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.55
0 to 0.35
Magnesium (Mg), % 4.5 to 6.5
0.45 to 0.9
Manganese (Mn), % 0 to 0.45
0 to 0.1
Silicon (Si), % 0 to 0.55
0.2 to 0.6
Titanium (Ti), % 0 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15